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Abstract 
     The discipline of Evidence Based Medicine 
(EBM) studies formal and quasi-formal methods for 
identifying high quality medical information and 
abstracting it in useful forms so that patients receive 
the best customized care possible [1]. Current 
computer-based methods for finding high quality 
information in PubMed and similar bibliographic 
resources utilize search tools that employ 
preconstructed Boolean queries. These clinical 
queries are derived from a combined application of 
(a) user interviews, (b) ad-hoc manual document 
quality review, and (c) search over a constrained 
space of disjunctive Boolean queries. The present 
research explores the use of powerful text 
categorization (machine learning) methods to identify 
content-specific and high-quality PubMed articles. 
Our results show that models built with the proposed 
approach outperform the Boolean based PubMed 
clinical query filters in discriminatory power. 
 
Introduction 
    Evidence Based medicine (EBM) is the clinical 
application of high-quality medical information. The 
application of EBM involves 3 distinct steps [2]:  (1) 
the identification of high-quality evidence that 
pertains to a specific clinical question, (2) evaluation 
and synthesis of this evidence, and (3) application of 
the evidence to the problem.  This paper addresses 
the question of how to identify high quality evidence. 
     One pioneering method to identify high quality 
articles is the use of the "clinical query filter" (CQF) 
for PubMed article retrieval.  Introduced by Haynes 
et. al, the method involves the creation of boolean set 
terms which are used to filter and identify high 
quality articles in pre-specified content areas. These 
filters have been shown to have good performance [3] 
and are featured in the clinical queries link in 
PubMed [4].  This method requires manual selection 
of terms and relies on a brute-force learning approach 
using a non-standard and fairly restrictive classifier 
(term disjunctions of 4 to 5 terms). 
     The motivation of the present paper is to 
contribute to the practice of EBM by exploring 
methods to automatically construct quality and 
content filters for article retrieval. We hypothesize 
that using powerful text categorization techniques 
and a suitable article collection for training, we can 

construct filters superior to the existing ones. Toward 
these goals, and as a first step, we explore computer 
models to retrieve high-quality, treatment-related 
articles in internal medicine. 
      
Methods  
1. Definitions 
     At the core of our efforts lies the selection of a 
rigorous quality and content gold standard as well as 
the creation of a document collection that captures 
this gold standard. Ideally this gold standard should 
be easy to obtain for large numbers of documents. 
For these reasons, we chose to use the selections of 
the editors and reviewers of the ACP journal club as 
our gold standard [5]. 
     The ACP journal club is a highly-rated meta-
publication.  It includes no original research articles. 
Instead, every month experts review the best journals 
in internal medicine and select the best articles 
according to specific selection criteria in the article 
class areas of: treatment, diagnosis, etiology, 
prognosis, quality improvement, clinical prediction 
guide, and economics. Selected articles are further 
subdivided into articles that are summarized and 
abstracted by the ACP because of their clinical 
importance, and those that are only cited because 
they meet all the selection criteria but may not pertain 
to vitally important clinical areas. (In the present 
paper, the abstracted or cited articles are denoted as 
ACP+; all other articles not abstracted or cited as 
ACP-.) Every article is subjected to rigorous review 
for inclusion.  For example, in the article class area of 
treatment, the basic criteria are a random allocation 
of participants to comparison groups, 80% follow-up 
of those entering the study, and the outcome to be of 
known or probable clinical importance [5].    
     For our first experiments, we chose the treatment 
class area. The ACP journal cites and abstracts this 
area the most, and a larger proportion of clinical 
questions are treatment-related [6].  In the discussion 
section we discuss extensions to all categories.  
     
2. Corpus Construction 
     We downloaded from PubMed all original articles 
with abstracts from the journals reviewed by the ACP 
in the publication period of July 1998 through August 
1999. Two conditions motivated this period of time.  
First, one year provides a large sample for the 



treatment category. Second, selecting a period of 
several years before the start of the present study 
gave ample time for original articles to be reviewed 
by the ACP. The ACP journal typically takes several 
months to review and republish an article. Thus, to 
ensure that no ACP+ articles are missed, the ACP 
journal was reviewed from the beginning of the 
publication period, July 1998 to nearly 1.5 years after 
the end of the publication period, December 2000. 
     We identified 49 journals appearing in the review 
lists of the table of contents of the first ACP journal 
in July 1998 to the last ACP journal in December 
2000.  This set of journals thus is guaranteed to be 
the complete set of journals reviewed by the ACP.  
     All original articles were automatically 
downloaded with custom Python scripts using the 
limit option of the PubMed search interface. Each 
search was limited to the title of 1 of the 49 journals 
and set to only retrieve articles during the publication 
period.  The “only items with abstracts” checkbox 
was marked to ensure that letters and other content 
were not included in the results.  These articles were 
downloaded in XML format. A custom built XML 
parser extracted PubmedID, title, abstract, publication 
type, and MeSH terms. All article information was 
stored in a relational database (MySQL) [7]. 
     Reviewing the ACP between July 1998 and 
December 2000 identified the high quality articles in 
the publication period of July 1998 to August 1999.  
Due to the unavailability of complete electronic 
versions of the ACP for these periods, all table of 
contents and cited article lists were scanned on a HP 
Scanjet C9850A and digitized using ABBY 
FineReader Pro optical character recognition (OCR) 
software [8]. OCR errors were manually identified 
and corrected. ACP articles were automatically 
matched with the titles of articles in the MySQL 
database and marked in the corpus.  In addition, each 
article was marked as to the article class it belongs.  
 
3. Corpus Preparation For Analysis  
     The corpus was divided into positive and negative 
classes. The positive class composed of 396 ACP+ 
articles in the treatment class. The negative class had 
15407 total ACP- articles and ACP+ articles not in 
the treatment class. 20% of the corpus for both 
classes was left aside as a reserve in the event that we 
needed an unbiased sample for future analyses. Of 
the remaining 80%, we created 10 mutually exclusive 
sets for cross validation. Cross validation is crucial to 
identify models with good generalization error and 
estimate that error (i.e. prevent overfitting of the 
model to the training data) [9]. 
     For each fold, after test set removal, the training 
set was further subdivided into a 70% train and a 
30% validation set.  The validation set was needed to 

optimize any learning model parameters.  The idea is 
to optimize the model parameters without using the 
test set since using the test set will likely overfit the 
learner to the test data [9]. We used maximization of 
area under the receiver operating curve (ROC) for 
parameter optimisation [10]. Thus, each fold has a 
train, validation, and test set with the proportions of 
each class in each set maintained. Each set  in the fold 
is further processed as described in this algorithm: 
 
For each article in this set 
     Extract mesh terms  
          precede all terms with 'mh_' 
          replace all punctuation with '_' 
          associate main headings with each  

subheading ||i.e. Migraine:etiology and 
Migraine: therapy|| 

     Extract publication types 
          precede all terms with 'pt_' 
          replace all punctuation with '_' 
     Concatenate abstract and title words 
          convert all words to lowercase 
          remove all punctuation and replace with '  ' 
          remove MEDLINE stop words 
          Porter-stem all words 
          calculate weights for terms //see text for details  
          calculate raw frequency occurrence of terms  
 
     The information provided to the learning 
algorithms were words in the title and abstract, 
publication types, and MeSH terms. MeSH and 
publication types were not encoded as individual 
terms but instead as phrases.  For example, the 
publication type Randomized Controlled Trial is 
encoded as a single entity. 
     Stop words are words such as: “the”, “a”, “other”, 
“each”, “other”, etc. that do not add semantic value to 
the classification.  We used the same stop words that 
are excluded by the Pubmed search engine [11].  
     The porter stemming algorithm [12] [13] was used 
to reduce words to their base forms.  Its use is 
motivated by the observation that word forms may 
not add additional value to the classification.  For 
example, the terms “randomly”, “randomised”, and  
”randomisation” all describe similar processes and 
were reduced to “random” by stemming. Stemming 
increases the effective sample in this example by 
encoding a term 3 times rather than 3 terms just once.  
      Log frequency with redundancy [14] is a 
weighting scheme used to encode information about 
the usefulness of a term in making a classification.  
Intuitively, terms that appear in many articles (i.e 
stop words) are not as useful in classifying articles as 
terms that appear in fewer documents.  Many 
weighting schemes exist [15], but this scheme was 



chosen due to its reported superior classification 
when using support vector machines [14]. 
     The final step was to calculate the raw occurrence 
of terms in each article.  Naïve bayes and the raw 
input to the boostexter algorithm used frequency 
rather than weighted terms.  Boostexter and support 
vector machines used weighted terms as input [16]. 
 
4. Statistical and Machine Learning Methods 
Due to space limitations a thorough review of all 
machine learning methods applied in the reported 
research is not possible. Such a review, of how 
machine learning applies to text categorization and 
information retrieval, can be found in [17]. In the 
present section we discuss which methods were 
applied and with what parameters: 
 
4.1 Naïve Bayes 
     Naïve Bayes is a common machine learning 
method used in text categorization with excellent 
results. The Naïve Bayes classifier estimates the 
probabilities of a class c given the raw terms w  by 
using the training data to estimate P(w|c). The 
classification predicted by this classifier is 
determined by the max a-posteriori class [18]. 
     We coded the algorithm in C as described in 
Mitchell 1997 [19].  No parameter optimization is 
necessary for Naïve Bayes. 
 
4.2 Text -Specific Boosting 
      Another state of the art method for text 
categorization is boosting. The basic idea behind 
boosting is that many simple and moderately 
inaccurate classification rules can be combined into a 
single, highly accurate rule. The prototypical 
algorithm for boosting is termed Adaboost. 
     Adaboost has been applied successfully using 
various methods to generate the simpler rules. Wilbur 
uses naive bayes with good results for identifying 
articles about restriction enzymes [20]. Shapire and 
Singer boost decision trees with good results on 
several datasets [21]. Schapire and Singer further 
extend this work in Boostexter which implements a 
one level decision tree that evaluates the presence or 
absence of a word for each category [16]. Because 
the binaries were readily available, and there is 
evidence that boosting trees are as good or better than 
other boosting methods for text (Wilbur, personal 
communication), we use Boostexter in our initial 
modeling efforts. 
     Specifically, we use AdaBoost.MR implemented 
as part of Boostexter available from AT&T [22]. 
Parameter optimization was implemented for the 
number of iterations (i.e. number of simple rules to 
consider). 
  

4.3 Support Vector Machines (SVMs) 
     Support vector machines (SVMs) can function as 
both linear and non-linear classifiers.  [23-25]. 
     For the text categorization task, the words are 
weighted and utilized as features for the linear and 
polynomial SVMs.  We use the implementation of 
SVMs in Svm-Light [26]. For the linear SVM , we 
used misclassification costs of {0.1, 0.2, 0.4, 0.7, 0.9, 
1, 5, 10, 20, 100, 1000}. For the polynomial SVM, 
we used the same misclassification costs minus {100, 
1000} and polynomial degrees of {2, 3, 5, 8}. 
Combinations of both cost and degree were run on 
the validation set. 
 
4.4 Clinical query filters 
     The clinical queries are Boolean queries 
optimized separately for sensitivity, specificity, and 
accuracy [3]. The exact queries used in Pubmed were 
applied to the categorization task.  The Boolean 
query for the sensitivity filter for treatment is 
“therapeutic use [MeSH subheading] OR drug 
therapy [MeSH terms] OR randomized controlled 
trial [ptyp] OR random*[text word].” The Boolean 
query optimized for specificity for treatment is 
“placebo [text word] OR (double [text word] AND 
blind*).” 
  
Results and Discussion 
1. Area under the curve analysis  
     The average AUCs for the 10 folds for each 
algorithm are presented in table 1. 
 

Learner Average 
AUC over 
10 folds 

Range 
over 10 folds 

p-value 
compared 
to largest  

LinSVM 0.965 0.948 – 0.978 0.01 
PolySVM 0.976 0.970 – 0.983 1.0 

Naïve Bayes 0.948 0.932 – 0.963 0.001 
Boost Raw 0.957 0.928 – 0.969 0.001 

Boost Wght 0.941 0.900 – 0.958 0.001 
Table 1:  Average AUC over 10 folds for each learning method. 

 
The high values for the AUCs suggest that the 
learning methods can distinguish between the target 
classes. The polynomial SVM model with degree 8 
and cost 0.1 has the best performance.  We compared 
the mean of the polynomial model to the other means 
using the Wilcoxon rank sum test [27]. All p-values 
for the AUC compared to the polynomial SVM are 
significant at the 0.01 level. These findings suggest 
that the problem has non-linear characteristics and is 
best solved by a polynomial classifier. The 
distribution of scores (not shown due to space 
limitations) for the test articles ranked with the 
polynomial SVM also shows a separation of the 
articles. 
 



2. 11 point precision-recall  
     The traditional 11-point precision-recall curve 
[28] gives the user an idea of what fraction of the 
articles she would need to peruse to get a certain 
recall level.  For example in Figure 1, at the 0.2 recall 
level, the precision is 0.68 for the linear SVM (i.e.,   
68% of the total articles returned are of high quality).  
Contrast with Naïve Bayes where only 37% of the 
total articles returned are of high quality. Figure 1 is 
an average over 10 folds. It is specific to this test set 
and is a method to compare retrieval/learning 
methods to one another.  
 

3. Comparison to clinical query filters 
     We compare now the sensitivity, specificity, 
precision, and accuracy of the machine learning 
methods against the clinical query filters optimized 
for sensitivity and specificity.  Recall that the clinical 
query filters return a Boolean result of whether an 
article is in the positive class or not. The learning 
methods return a score. To make the comparison, we 
use the CQF optimized for sensitivity and vary the 
threshold for the article scores produced by the 
learning methods until their sensitivity matches the 
optimal CFQ sensitivity for each fold.  The same 
procedure was run for the optimal CQF specificity. 
95% confidence intervals were calculated based on a 
binomial distribution [27]. Tables 2-3 illustrate these 
results. 
     Within each fold, we statistically compare the 
learning methods to the CQF using McNemar’s test 
[27]. 10 p-values are generated for each method. The 
p-values vary with some folds being highly 
significant and others not as significant. To reconcile 
these irregularities, the 10 p-values are averaged and 
a vote of significance by each fold is taken. At fixed 
sensitivity, the mean p-values of the 10 folds for all 
the methods are significant at the 0.05 level except 

for Boostexter with raw input at the 0.14 level and 
the linear SVM at 0.06 level. Using votes, a 2/3 
majority of folds in each method are significant at the 
0.05 level.  
 

 Sensitivity Specificity 
ClinSensOpt 0.736(0.713, 0.758) 
SensLinSVM 0.791 (0.77, 0.811) 
SensPolySVM 0.875(0.857, 0.891) 
SensNaiveBay 0.768(0.747, 0.789) 
SensBtextwght 0.635(0.611, 0.659) 
SensBtextraw 

0.967(0.823, 0.999) 
 

0.786(0.765, 0.806) 
 Precision Accuracy 

ClinSensOpt 0.07 (0.046, 0.101) 0.754(0.732, 0.775) 
SensLinSVM 0.107(0.076, 0.146) 0.81(0.79, 0.829) 
SensPolySVM 0.169(0.119, 0.229) 0.893(0.877, 0.908) 
SensNaiveBay 0.091(0.064, 0.126) 0.787(0.766, 0.807) 
SensBtextwght 0.065(0.046, 0.089) 0.655(0.63, 0.678) 
SensBtextraw 0.099(0.069, 0.136) 0.804(0.784, 0.824) 

Table 2: Learning methods at fixed sensitivity 
     For most learning method, at score thresholds 
equal to optimal CQF sensitivity, the values for both 
specificity and precision are superior to the CQF 
values. 
 

 Sensitivity Specificity 
ClinSpecOpt 0.367(0.199, 0.561) 
SensLinSVM 0.767(0.577, 0.901) 
SensPolySVM 0.80(0.614, 0.923) 
SensNaiveBay 0.60(0.406, 0.773) 
SensBtextwght 0.60(0.406, 0.773) 
SensBtextraw 0.667(0.472, 0.827) 

0.958(0.947, 0.968) 

 Precision Accuracy 
ClinSpecOpt 0.15 (0.115, 0.191) 0.948(0.935, 0.958) 
SensLinSVM 0.264(0.176, 0.37) 0.955(0.943, 0.964) 
SensPolySVM 0.281(0.191, 0.386) 0.955(0.944, 0.965) 
SensNaiveBay 0.22(0.136, 0.325) 0.951(0.94, 0.962) 
SensBtextwght 0.22(0.136, 0.325) 0.951(0.94, 0.962) 
SensBtextraw 0.238(0.152, 0.344) 0.953(0.941, 0.963) 

Table 3: Learning methods at fixed specificity 
     At fixed specificity, the mean p-values of the 10 
folds are all significant at the 0.05 level.  Using votes, 
a 2/3 majority of folds in each method are also 
significant at the 0.05 level.  
     Fixing specificity yields superior sensitivity and 
precision.  Sensitivity rises from the base of 37% to 
80%, and precision rises from 15% to 28%.  
 
Discussion 
     To summarize the results, the learning methods in 
these experiments exhibit high discriminatory 
performance as measured by the AUC; the resulting 
models outperform the Boolean-based CQF; 
Polynomial SVMs have the best performance as 
measured by the AUC and the 11 point curve. 
     The choice of the gold standard is important for 
the external validity of these results. It is possible that 
ACP journal reviewers may have accepted or rejected 
some paper inadvertently relative to the ACP journal 
stated criteria. However, the international authority of 

 
Figure 1: Interpolated 11-point curves  

 



the ACPJC, as a premier international meta-
publication with dedicated experts selecting articles 
by thorough review of the literature based on explicit 
and well-defined criteria, provides a strong basis for a 
gold standard; we propose that, as a result, the 
external validity of this group’s selections meet and 
exceed the validity of most, if not all, ad-hoc groups 
of experts brought together for the sole purpose of 
rating articles manually to construct CQFs. In 
addition, the ACPJ’s more recent selections are 
readily available in electronic form for automatic 
corpus construction. 
      We also note that we attempted to obtain the 
original gold standard used by Haynes et al for 
additional comparisons with those models [3]. 
Unfortunately this data is no longer available 
(Haynes, personal communication).   
     We are currently exploring extensions to all article 
class areas. The methodology is identical, and 
preliminary results suggest comparable performance. 
      The mapping of such models to EBM retrieval is 
straightforward.  Most authors assume so (implicitly) 
in their research and focus on the harder problem of 
finding the high quality articles. For example, one 
setup is to run a Boolean query of the clinical 
question and then run the high quality treatment 
filters on the Boolean results (or vice-versa). We 
recognize that the work presented here is a first step 
for addressing the high-quality, content-specific 
classification problem.  This work paves the way for 
an applied system to realize the clinical utility of 
these techniques. 
 

References 
1. Sackett, D.L., et al., Evidence Based Medicine: 

How To Practice and Teach EBM. 1998, 
Edinburgh: Churchill Livingstone. 

2. Bigby, M., Evidence-based medicine in a nutshell. 
A guide to finding and using the best evidence in 
caring for patients. Arch Dermatol., 1998. 123(12): 
p. 1609-18. 

3. Haynes, B., et al., Developing Optimal Search 
Strategies for Detecting Sound Clinical Studies in 
MEDLINE. JAMIA, 1994. 1(6): p. 447-458. 

4. http://www.ncbi.nlm.nih.gov/PubMed/ 
5. Purpose and Procedure. ACP Journal, 1999. 

131(1): p. A-15 - A-16. 
6. Jerome, R.N., et al., Information Needs of clinical 

teams: analysis of questions received by the 
Clinical Informatics Consult Service. Bull Med 
Libr Assoc, 2001. 89(2): p. 177-184. 

7. http://www.mysql.com/  
8. http://www.abbyy.com/  
9. Kulikowski, C.A. and S. Weiss, eds. Computer 

Systems That Learn . ed. M. Kauffman. Jan 1991. 

10.Metz, C.E., Basic Principles of ROC Analysis. 
Sem in Nuc Med, 1978. 8(4): p. 283-298. 

11.www.princeton.edu/~biolib/instruct/MedSW.html 
12.http://www.tartarus.org/~martin/PorterStemmer/ 
13.Porter, M.F., An algorithm for suffix stripping. 

Program, 1980. 14(3): p. 130-137. 
14.Leopold, E. and J. Kindermann, Text 

Categorization with Support Vector Machines.  
How to Represent Texts In Input Space? Machine 
Learning, 2002. 46: p. 423-444. 

15.Salton, G. and C. Buckley, Term Weighting 
Approaches in Automatic Retrieval. Info Process 
and Management, 1988. 24(5): p. 513-523. 

16.Schapire, R.E. and Y. Singer, Boostexter: A 
Boosting-based System for Text Categorization. 
Machine Learning, 2000. 39(2/3): p. 135-168. 

17.Duda, R., P. Hart, and D. Stork, Pattern 
Classification. 2nd ed. ed, ed. J.W. Sons. 2001. 

18.Joachims, T. A probabilistic analysis of the 
Rocchio Algorithm With TFIDF for text 
categorization. in 14th International Conference 
on Machine Learning. 1997. Nashville, TN: 
Morgan Kauffman. 

19.Mitchell, T.M., Machine learning. 1997, New 
York: McGraw-Hill. xvii, 414. 

20.Wilbur, W.J. Boosting Naive Bayesian Learning 
on a Large Subset of MEDLINE . in AMIA. 2000. 
Los Angeles, CA: Hanley & Belfus, Inc. 

21.Schapire, R.E. and Y. Singer, Improved boosting 
algorithms using confidence rated predictions. 
Machine Learning, 1999. 37(3): p. 297-336. 

22.www.cs.princeton.edu/~schapire/boostexter.html 
23.Cristianini, N. and J. Shawe-Taylor, An 

Introduction to Support Vector Machines and other 
Kernel-based Learning Methods. 2000: Cambridge 
University Press. 

24.Burges, C., A tutorial on support vector machines 
for pattern recognition. Data Mining and 
Knowledge Discovery, 1998. 2: p. 121-167. 

25.Vapnik, V., Statistical Learning Theory. 1998: 
Wiley. 

26.Joachims, T., ed. Making Large-Scale SVM 
Learning Practical. Advances in Kernel Methods - 
Support Vector Learning., ed. B. Scholkopf, C. 
Burges, and A. Smola. 1999, MIT-Press. 

27.Pagano, M. and e. al, Principles of Biostatistics. 
2000: Duxbury Thompson Learning. 

28.Baeza -Yates, R. and B. Ribeiro-Neto, Modern 
Information Retrieval . 1999, Harlow, England: 
Addison-Wesley. 

 
Acknowledgements 
The first author is funded by Vanderbilt University 
Funds. The authors wish to thank Drs. John Wilbur, 
Bill Hersh, and Brian Haynes for valuable comments 
and suggestions.  


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: AMIA 2003 Symposium Proceedings − Page 31
	02: AMIA 2003 Symposium Proceedings − Page 32
	03: AMIA 2003 Symposium Proceedings − Page 33
	04: AMIA 2003 Symposium Proceedings − Page 34
	05: AMIA 2003 Symposium Proceedings − Page 35


